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Prediction of Nonisothermal Austenite Decomposition

A Comparative Study of Methods Used for the

T. Réti, L. Horvath, and |. Felde

In this paper, different phenomenological procedures applied to the prediction of the progress of non-
isothermal austenite transformation are analyzed and compared. It is shown, that by formal generaliza-
tion of the isothermal Avrami kinetic function, various types of kinetic differential equations can be
generated. These are suitable for the phenomenological description of nonisothermal, diffusion-controlled,
transformation processes. First, fundamental features of generalized kinetic differential equations and
the additivity rule are discussed. Next, practical applications for prediction purposes are tested on the
basis of dilatometric experiments.

When studying the austenite/pearlite transformation in a low alloy eutectoid steel, transformation kinet-
ics were measured under isothermal and nonisothermal conditions. Dilatometric measurements verified
that both the “semiadditive” kinetic differential equations and the additivity rule can be successfully ap-
plied to predict the progress of nonisothermal austenite/pearlite transformation. It was found that the se-
lected Avrami type semiadditive differential equation and the application of the additivity rule furnish
practically identical results. This is due to the fact that there is a close theoretical relationship between
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the kinetic differential equations of separable types and the additivity principle.

distortion prediction, phase transformation, process
modeling, transformation modeling

Keywords

1. Introduction

Starting with theoretical considerations, five prediction
methods (based on the use of differential equations, the ad-
ditivity principle, and an integro-differential equation of
special form) are discussed and compared. The validity of
different phenomenological methods applied to the predic-
tion of the progress of austenite/pearlite transformation are
critically examined.

For this purpose, isothermal and nonisothermal dilatomet-
ric measurements are performed on a low alloy eutectoid steel.
Comparing the five methods, it is shown that the kinetics of
nonisothermal austenite/pearlite transformation in the selected
eutectoid steel can be successfully predicted using both the
Avrami type generalized “semiadditive” kinetic differential
equation and the additivity principle.

2. Theoretical Background

Before presenting the description of the investigations
based on dilatometric experiments and computer simulation,
the theoretical background of prediction methods applied are
outlined and definitions and notations are introduced. They
concern the basic properties of kinetic differential equations,
the additivity rule, and the integro-differential equations se-
lected for the description of the diffusional austenite decompo-
sition.

T. Réti and L. Horvath, Banki Donét Polytechnic, Budapest, Hun-
gary; L Felde, Bay Zoltdn Institute for Material Science and Technol-
ogy, Budapest, Hungary.
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2.1 Kinetic Differential Equations

In general, a mathematical model of transformation kinetics
consists of a set of algebraic or differential equations that quan-
titatively represent the progress of the process as a function of
time.

As a first step, the traditional isothermal kinetic function is
defined as:

F(t,y, =0 (Eq1)

where ¢is the time, y is the amount of material transformed, T is
the temperature, and F is an appropriately selected real func-
tion. The kinetic function given by Eq 1 should ensure the sat-
isfaction of the following conditions:

Y6, T) =0 if 1<t (Bq2.1)
% >0 if 2 (Eq2.2)
limy(t, T) =Y, if t—> o0 (Eq2.3)

where ¢ is the incubation time at a specific temperature and Y,
= Y(T) is the total amount of transformation product at the
condition of equilibrium. If Y, = 1, the reaction complete; if ¥,
< 1, then it is incomplete by definition.

In many cases, the modeling and the phenomenological de-
scription of nonisothermal transformations are based on the ap-
plication of an ordinary differential equation given by:

dy

Z':f()(tv y’ T)fl (t’ )’» T’ T)

y(r)=0 (Eq3)
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where T = d7/dt is the rate of temperature change, and fy and f;
are nonnegative functions. It is assumed in Eq 3 that

f](t’yv T9T)El

if the temperature is constant, that is, T=0.

Most kinetic differential equations can be classified into
two main categories: additive differential equations and
semiadditive differential equations (Ref 1-3).

A kinetic differential equation is said to be additive if it has
the form:

dy
2 = KaDHAD) (Eq4)

A kinetic differential equation is called semiadditive if it can be
written in the form:

dy .
E=H(y, n (Eq5)

Consequently, a transformation process described by Eq 4 or 5
is called an additive or semiadditive process, respectively.

According to the definitions stated above, every additive ki-
netic differential equation is semiadditive. The special charac-
teristic of Eq 4 and 5 are that the instantaneous transformation
rate is solely a function of the fraction transformed y and the
transformation temperature 7. The main property of additive
kinetic differential equations is that they are separable with re-
spectto Tand y.

In the majority of cases, kinetic differential equations can
be formulated in the following factorized form (Ref 4):

dy
7 = (D) = yMHg(,y, T)

y(p) =0 (Eq 6)

where Hy is a nonnegative function and Hy(¢, y, T) = 0if t = ¢
at constant temperature. The term [Y, (T) - y] is referred to as
the “impingement” factor (Ref 2).

Kinetic differential equations of practical interest can be
written in the following generalized form:

Y e
dy Y, Y,
—=KglY,~y]%yB|In -1 (Eq7)
dr~ RTe Vo= | [| Yoy

where a., B, ¥, €, 1, and K}, are appropriately selected composi-
tion, microstructure, and temperature dependent parameters
(Ref 5). Generally, the differential equation represented by for-
mula in Eq 7 cannot be integrated in a closed form. From this,
it follows that their parameters can be determined only by
measuring y and dy/dt values simultaneously. The temperature
dependent parameters o, B, ¥, €, M, and Ky can be calculated
more easily if the values y and dy/dT (i.e., the derivative of y
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with respect to temperature) are directly measured by perform-
ing nonisothermal dilatometric investigations. A concrete
practical application of this method is demonstrated in Ref 6.

In some special cases, by applying appropriately selected
parameters, the differential equation (Eq 7) can be integrated in
aclosed form. For example, by selecting the following parame-
tersin Eq 7:

mhT
Koy = — —— Eq 8
Rp (Eq8)

The differential Eq 7 can be transformed into a simplified form:

(m—1ym
dy m K™ Y, \’
— == [y, -y]P*! -1 9
T [Y, -y Y-y (Eq9)

Originally Eq 9 was used for predicting the nonisothermal
austenite/ferrite reaction in hypoeutectoid steels (Ref 7, 8). If
the kinetic parameters in Eq 9 are considered to be constant, its
solution is given as:

YO =Y {1~ 1+ Ky 11} (Eq 10)

If p = 1, then Eq 10 reduces to the well known Austin-Rickett’s
kinetic function (Ref 9, 10). Due to this fact, Eq 10 is referred
to as a generalized Austin-Rickett’s kinetic equation.

It follows from the previous considerations, that differential
Eq 7 is semiadditive if their parameters a, B, v, €, and 1} are in-
dependent of time, and it is additive if o, B, v, €, and 1} are con-
stant. As previously mentioned, differential Eq 7 can be solved
generally by using numerical methods, for example, by apply-
ing the generalized recursive algorithm (Ref 11).

2.2 Avrami Type Generalized Kinetic Differential
Equations

Kinetic differential equations can be derived from basic
physical laws, but it is possible to generate them on the basis of
the known isothermal kinetic functions (Ref 1). When con-
structing kinetic differential equations for prediction purposes,
the study concentrated on the commonly used Avrami equation
defined as:

¥(t) = Y,{1 — exp [-K1"] } (Eq11)

where K, n, and Y, are the temperature and composition de-
pendent parameters (Ref 3, 12, 13).

The Avrami Eq 11 can be extended to a nonisothermal con-
dition in several other manners. The simplest way of generat-
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ing a kinetic differential equation from Avrami’s law is to dif-
ferentiate Eq 11 with respect to time. Thus (Ref 14):

o Y nKe ! K1 " Eq12
v Kt exp{-— 1 } (Eq 12)

Another type of generalized kinetic differential equation is
given as:

dy y. 194
:17=nK1/‘1t =Yg [y, - y] {m ” £ ] (Eq 13)

e

where n and g are nonnegative temperature dependent parame-
ters.

Differential equations (Eq 12, 13) are referred to as the
Avrami type generalized kinetic functions because by solving
them under isothermal conditions, the Avrami equation (Eq
11) can be obtained as a special case. Some typical properties
of Eq 13 are parameters n and K can be estimated from isother-
mal measurements, but in order to compute the parameter g, it
is necessary to perform experiments at varying temperatures
(i.e., by using linear cooling or heating). Because the right-
hand side of Eq 13 depends on time explicitly, Eq 13 is not
semiadditive. The function 8(7), defined as:

()
(1) == Eq 14
(7) o) (Eq 14)

can be considered a quantitative measure of semiadditivity. It
follows that the kinetic differential equation (Eq 13) is semiad-
ditive if 8(7) = 1. If ¢ is constant and Y, = 1, the solution of Eq
13is

: q
y()=1—exp {— [%I nk Va t(n-ava dtu:l } (Eq 15)

0

If g and n are constant and g = n, and ¥, = 1, then Eq 13 will be
additive. In this case, the solution can be reduced to the form

! n
yn=1- exp{— |: j K/ dtu:| }
[

2.3 Additivity Rule

The additivity rule was proposed by Scheil (Ref 15) to pre-
dict the start of transformation, that is, the incubation time un-
der nonisothermal conditions. Later, it was extended to the
entire range of transformed fractions (Ref 2, 3, 16-19).

The additivity rule is considered a special algorithm for pre-
dicting the nonisothermal transformation (CCT curves) on the
basis of the previously known isotherm kinetic function (TTT
curves) (Ref 20-23). It can be formulated by the following
equation. Consider the isothermal time t(y, T) at which the re-

(Eq 16)
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action reached a certain fraction of completion y. On changing
the temperature as a function of time, the integral:

dr,
Ty

t
Gy =] (Eq17)
0

equals unity in that time ¢ = f; when the fraction transformed
reaches the preselected yg, that is, G(#;, y) = 1.

Beginning with Eq 17, several conclusions can be drawn. It
can be proven that if a kinetic differential equation is additive,
the same fraction y is predicted by applying the additivity rule
and by solving the differential equation (Eq 4) (Ref 2, 3, 24-
26). From this, it immediately follows that the use of Eq 4 and
the application of the additivity rule lead to identical results.
Conversely, if a kinetic differential equation is nonadditive,
the results computed by the two methods will be theoretically
different.

The traditional additivity rule given by Eq 17 can be gener-
alized in the following form:

! d,
(Eq18)

I DA . D)

where f, is a nonnegative weighting function for which:

LT, T)=1

>
is fulfilled if 7= 0 (Ref 27). Function f,, which takes into ac-
count the influence of rate of temperature change on the rate of
nonisothermal transformation, can be defined in several ways.
In practice, it can be given in the form:

LT, T)=1+xT (Eq19.1)

or

H T, Ty=exp (—x T) (Eq19.2)

where K is a constant or a temperature and/or time dependent
parameter. If £5(+, T, T) = 1, then the conventional additivity
principle represented by Eq 17 is a special case.

Based on the generalized additivity formula (Eq 18), a non-
isothermal kinetic differential equation can be generated in the
form (Ref 27):

t -1

._a_‘[ dr, /I:T(y, T) fo (2, T, () :|-=
0

|r

P
& e LY
d~ 9GPy

- Eq 20
T (y’ T)fz(t’ T’ T) ( q )

where G(t,y) = 1 and y(0) = 0.
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If the function t(y, T), characterizing the isotherm transfor-
mation time, is separable with respect to y and 7, then the solu-
tion of the differential equation can be easily generated. In this
case, T(y, T) can be written as:

1y, T) = 1,(0)1(7) (Eq21)
and the differential equation (Eq 20) is simplified to the form:

dy  [dv,(Vdyl™!

= g (Eq22)
dt (D1, T,T)
Integrating this formula:
! dt
4=/ s (Eq23)

0 Tz(T) fz(tu’T’ T)

where t; (0) = 0. Assuming that the inverse function i exists,
the solution y(7) can be generated as (Ref 27):

(=1 f &y (Eq24)
=g inv U
y 1 0 T2(W2(tu9 Ts T) q

Equation 24 makes it possible to derive nonisotherm kinetic
equations from known isotherm kinetic functions. The method
can generally be applied to every transformation process for
which Eq 21 is fulfilled. For example, beginning with the
Avrami function (Eq 11) and then supposing that Y, =1 and n
is constant, the following Avrami type generalized kinetic
function is:

I_ ! Kli/n "
—[ 6[ S T, T)dtu} ]

K£(t,y, T, T) = 1, then Eq 25 will be identical to Eq 16. It must be
noted that the parameters of weighting function £, in Eq 25 can be
estimated only by performing nonisothermal experiments.

y()=1-exp (Eq25)

2.4 Integro-Differential Equations Used for the
Prediction of Nonisothermal Transformation

Some authors use integro-differential equations for predic-
tion purposes (Ref 2, 29-32). In many practical cases, these
equations are formulated in the following form:

dy v
dt_( e"}’)'-][f,y,T]

y(0)=0 (Eq 26)

where J[1, y, T]is a definite integral over the time interval (0, ¢).

The integro-differential equation of the simplest type can be
obtained from the Avrami’s transformation theory (Ref 3, 12,
13, 33), and it can be written as:
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t
L = (V=3 [ nln - UKD - 1,2 ds, (Eq27)
0

wheren=n(T) > 1.
The solution of Eq 27 can be obtained by transforming the
integral into the following form:

! t
j nin-1] KDt -1] n-2 dt, =I nK(T) i {[, ~1] n—l" ds,
0 0 ot

4
| nk @I - 1,07 a,

0

Y

a

'
(Eq28)

By inserting the formula of Eq 28 in Eq 27, and integrating with
respect to time:

t
yn=Y, {1 —exp [—J nK(T)[t—1,] -1 dtu] } (Eq 29)

0

It can be easily verified, that with constant temperature, Eq
29 is identical to the Avrami law (Eq 11, Ref 11). A special
form of the kinetic function (Eq 29) has been used mainly by
Japanese authors for predicting nonisothermal diffusion con-
trolled transformations (Ref 28-30).

Integro-differential equations can also be constructed from
isothermal kinetic functions by using the differential equation
(Eq 20), which was generated on the basis of the extended ad-
ditivity principle given by Eq 18. This method is demonstrated
by the following example. Starting with the Avrami equation
(Eq 11, Ref 11), and assuming that Y, = 1 and » is constant (Eq
20), then:

d 1 1-1/n
y =V(t,y) —K—— [1-y] {ln[l 1)’}} (Eq 30)

/n
dr AT

where V(1, y) is defined as:

—1

! d
v, y=| | b (Eq31)
) DT DA T D)

and G(, y,) = 1. Consequently, if the Avrami exponent 7 is
constant, it follows from Eq 30 and 31 that V(¢, y) = n. In this
case, integro-differential Eq 30 will simplify to the form:

dy nkWn 1 1=1/n
P A {m[l _y))} (Eq32)

From the preceding equations, it follows that in the case of con-
stant Avrami exponent n, the solution of differential Eq 32 will
be identical to the formula of Eq 25.
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3. Investigations Based on Dilatometric
Measurements and Computer Simulation

3.1 Experimental Analysis of Kinetics of
Austenite-Pearlite Transformation

To compare the different phenomenological models se-
lected for predicting the progress of nonisothermal austenite
decomposition, experiments were performed on a low alloy eu-
tectoid steel (0.78% C-0.31% Si-0.41% Mn-0.96% Ni-0.28%
Cr). The basic material, a hot rolled steel bar, was homoge-
nized in oxygen-free argon at 1200 °C for 10 h to remove the
banding by high temperature treatment. To study the pearlite
transformation behavior, specimens were austenitized at 1000
°C for 20 min and cooled by argon according to specified time-
temperature programs. The progress of pearlite transformation
during isothermal holding in the 598 to 646 °C temperature
range and continuous cooling was measured in a vacuum dila-
tometer, with argon rinsing, using a highly accurate tempera-
ture control.

When studying the isothermal austenite decomposition, the
austenitized specimens were immediately cooled by argon to
various temperatures below the eutectoid temperature (A, =
688 °C) and held at these temperatures to transform into pear-
lite. Figure 1 shows isothermal kinetic curves for specimens
transformed at temperatures of 598, 617, and 638 °C.

To describe the isothermal austenite/pearlite transforma-
tion in the temperature range of 598 to 646 °C, the authors
chose the Avrami kinetic function. Taking into considera-
tion that the austenite-pearlite transformation is complete,
and that Y, =1, the Avrami function can be given in a sim-
plified form:

¥(#) = 1 - exp (-K(D)"D} (Eq33)

Parameters K and n were estimated by nonlinear regression
analysis, using the measured reaction fractions obtained from
isothermal dilatometric tests.

Table 1 gives the measured values of the Avrami exponent.
As can be observed, parameter n is not constant in the investi-
gated temperature interval, but it is a monotonic decreasing
function of temperature.

The temperature-dependent Kkinetic parameters of the
Avrami equation were approximated by continuous exponen-
tial type functions defined as:

K(T) =exp [AO +A(T—-562)2 +A, ] (Eq34)

1
(T-688)2T

and

n(T) = 3.4 + exp[Ny + N, T+ N,T%] (Eq 35)

where Ag=-14.2144, A; = 1.0388 x 1073, A, = -8927517, N,
=-389, N; = 1.3115, and N, =-1.10517 x 1073, Table 1 also
gives values of the Avrami exponent calculated by Eq 33. Fig-
ure 2 shows the TTT diagram describing the isothermal,
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austenite-pearlite transformation. It was calculated using Eq
3310 35.

To analyze the pearlite formation during continuous cool-
ing with constant rates of temperature, specimens held at the
austenitizing temperature were first gas cooled to 684 £ 3 °C
and cooled with the following cooling rates: 0.17, 0.38, 0.85,
and 1.1 K/s. Figure 3 illustrates the kinetics of pearlite transfor-
mation for different cooling rates. Transformation Kinetics re-
lated to the cooling rate of 1.1 K/s were excluded from
investigations because a considerable amount of austenite
transformed into bainite during cooling.

3.2 Computer Simulation Performed for the Prediction
of Nonisothermal Austenite-Pearlite Transformation

To predict the austenite-pearlite transformation during lin-
ear cooling, the following methods were selected for testing:

e  Additivity rule represented by Eq 17

e Integro-differential equation given by Eq 27

e Three kinetic differential equations generated from Eq 12
and 13

Itis important to note that all five methods are based on the use
of the Avrami law given by Eq 33. The solution of the selected
integro-differential equation results from the formula of Eq 29,
as a special case, assuming that Y, = 1 for pearlitic reactionin a
eutectoid steel:

3
ya®)=1—-exp [—I nK(T)[t-1,] n-1 dtu] (Eq36)

0

Table1 Measured and calculated values of
Avrami exponent, n

Avrami exponent, n
Method 598°C 609°C 617°C 630°C 638°C 688°C

Measured values 4.48 4.21 3.97 3.65 3.52
3.521 34

Calculatedby Eq35 4.466 4.233 3.988  3.647
1 T T —1 7 T T T T
a + o]
o+ °
osk Du ++ oo i
> o+ [
~ o + o
I oD+ o
'% 06 o+ o 7
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£ o+ o
g 04l o+ ° .
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02} os o + 617°C 1
o+ o ° §38°C
a+ o
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Time, s

Fig.1 Isothermal kinetic curves for specimens transformed at
different temperatures
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The selected kinetic differential equations were the following:

dyy

— ="Kt =1 exp |-K17} (Eq37)
dy
d—tcantn_l(l -¥c) (Eq 38)
dyp 1/n (n-1)/m
=5 ="KV (1 - yp)] (1 -yp) (Eq39)
680 T —
— y=0.01 A,,=688 °C
- y=0.10
o 660 - T y=0.25
& —— y=0.50
2 ol —- y=0.99
2
§
F s20}
600 -
1 10 100 1.10°

Time, s

Fig.2 TTT diagram of the eutectoid steel investigated
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Fig.3 Nonisothermal transformation kinetics related to differ-
ent cooling rates
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In the case of ¥, = 1, Eq 37 is identical to Eq 12. Equations 38
and 39 are considered to be special cases of Eq 13. Starting with
Eq 13 and assuming that Y, = 1, Eq 38 can be obtained by se-
lecting ¢(7) = 1, while Eq 39 can be obtained if ¢(T) = n(T) is
fulfilled. Parameters K and n in Eq 37 to 39 were calculated by
means of the formulas in Eq 34 and 35.

Because Eq 37 to 39 have been used by several authors for
prediction purposes (Ref 13, 14, 33-35), the following facts
must be taken into account:

e Since K and n are temperature dependent, the solution of
differential equations (Eq 37-39) can be determined by nu-
merical methods only. For numerical calculations the
authors used the computational algorithms givenin Ref 19.

e  Under isothermal conditions, the solution of Eq 37 to 39 re-
sults in the traditional Avrami equation (Eq 33) as a special
case.

e  Kinetic differential Eq 39 can be generated not only from
Eq 13 but also from Eq 7 or Eq 30. This can be easily veri-
fied by substituting =1, =0, y=(n-1)/n, =0, and
Kg =nK'"into Eq 7 or by substituting f,(z, T, T) = 1 into Eq
32, respectively. It is semiadditive because n is tempera-
ture-dependent. If n = 1, Eq 38 and 39 are simplified into
the same form.

1 T |
v=0.17 K/s
0.8} |
- Eq.(36)
c
§ *or Eq.(39)
2 Eq.(17)
£ 04} .
3
a
02 /Eq.(37)
(o] — .
0 100 400 500
1 r . ' _ .
© measured data v=0.17 Kis
08 4
> Eq.(38)
=3
g oer Eq.(39)
g Eq.(36)"
P Eq.(17)
£ 04f ]
8
Eq.(37)
02} N |
NG
0 1 L 1 | )
600 610 620 630 640 650 660 670 680

Temperature, °C

Fig.4 Transformation kinetics predicted by five different
methods (cooling rate: 0.17 K/s)
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e  For cooling rates 0.17, 0.38, and 0.85 K/s, the measured
data and the results of computer simulation obtained by the
five methods of prediction are shown in Fig. 4 to 6.

3.3 Comparison of Methods Used for Predicting the
Austenite-Pearlite Transformation

From the comparison between the calculated results and
experiments, the following conclusions can be drawn (Fig.

4-6):

e  The pearlite fractions predicted by Eq 39 and the additivity
rule agree with experimental results obtained by dilatomet-
ric measurements. The kinetic differential Eq 39 and the
application of the additivity rule lead to the similar results.
This is because the structure of the differential equations
(Eq 30, 39) seems to be similar.

e  Pearlite amounts calculated by Eq 36 and 38 differ consid-
erably from those obtained by measurements. As can be
seen from diagrams, the pearlite fraction predicted by Eq
38 is overestimated, while Eq 36 underestimates the meas-
ured amount of pearlite.

e Asdemonstrated in Fig. 4 to 6, a special property of Eq 37
is lim yg (¢) is not equal to 1, if the transformation time
tends toward infinity. Due to this fact, which is verified

1 T T T T
=0.38 K/s
o8|
- Eq.(36)
§ os} Eq.(39)
Q
©
5 g Eq.(17)
= 41 E
§ Eq.(38) /Eq.(37)
il )// —
0 '] 1 L i
0 50 100 150 200 250
Time, s
1 T T T T
® measured data
08} T
> Eq.(36) Eo.(38
§ o] EaO 68 ]
©
= Eq.(17)
% 04l T~ .
& Ea37~__
0.2 ]
v=0.38 K/s
0 1 i I i
600 610 620 630 640 650 660 670 680

Temperature, °C

Fig.5 Transformation kinetics predicted by five different
methods (cooling rate: 0.38 K/s)
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theoretically in Appendix 1, the requirement formulated by
Eq 2.3 is not fulfilled. From this, it follows that the kinetic
equation represented by Eq 37 cannot be applied to predict
nonisothermal transformation (Ref 14).

4. Summary and Conclusions

Several approaches devoted to the prediction of non-
isothermal transformation were analyzed and compared,
taking into consideration the generalization of pheno-
menological methods of various types. Starting with the
Avrami function, it was demonstrated that conventional iso-
therm kinetic functions can be extended in several ways to
describe the diffusional transformation processes occurring
at varying temperatures.

After studying the austenite decomposition in a low alloy
eutectoid steel, kinetic pearlite transformation was measured
under isothermal and nonisothermal conditions using a dila-
tometer.

For predicting the progress of nonisothermal pearlite trans-
formation, five methods—the additivity rule represented by Eq
17, the integro-differential equation (Eq 27), and three differ-
ent types of kinetic differential equations (Eq 37-39)—were
analyzed and tested.

1 T T T T T T T T T
=0.85 K/
v S Eq.(39)-

08 »
>
5 o6k Eq.(38) Eq.(37)-
B
o
P
£ 04 £q.(37)~_ o =
8 v
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02 y, .

. q.(36)
O 1 i A1 A A 1 I '
0 10 20 30 40 50 60 70 80 90 100
Time, s
T 1
=0.85 Kis
>
<
o p
°
(o]
&=
g -t
S
-1
o
e measured data

610 620 630 640 650 660 670 680

Temperature, °C

Fig. 6 Transformation kinetics predicted by five different
methods (cooling rate: 0.85 K/s)
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Fig.7 Kinetic curve predicted from Eq A2 and A3

The main conclusions can be summarized as follows:

e  After analyzing the austenite/pearlite transformation in a
low alloy eutectoid steel during continuous cooling, the
authors found that the pearlite fractions predicted by the ki-
netic differential equation (Eq 39) and the additivity rule
are in agreement with experimental results obtained by di-
latometric measurements. The semi additive differential
equation (Eq 39) and the use of the additivity rule lead to
similar results. This is explained by the “structure” of the
differential Eq 30 generated on the basis of the additivity
rule. Differential Eq 39 is a similar type. Theoretically, Eq
30 and 39 can be identical only if the Avrami exponent is
constant, and the weighting function f(t, y, T, TH=1.In
this case, Eq 39 is additive.
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e  Comparing the methods based on the application of the addi-
tivity rule and differential Eq 39, the application of the latter is
advantageous due to simpler numerical computations. If dif-
ferential Eq 39 is not able to meet the requirements related to
the prediction accuracy, then the use of the generalized
Avrami type kinetic differential equation defined as shown
below is recommended. In this case, however, parameter g
and the weighting function f, should be estimated by perform-
ing preliminary nonisothermal experiments.

(g-1)/g
dy /g Y
D_ KT oo [Y, - y] {In|—=
dl 2(1, T, T') Ye -y

e  Pearlite amounts predicted by applying Eq 36 and 38 differ
considerably from those obtained by dilatometric measure-
ments. It was found that Eq 38 overestimates, while Eq 36 un-
derestimates the measured amount of pearlite. Finally, it was
proven mathematically that kinetic differential Eq 37 is inap-
plicable to the prediction of nonisothermal transformations.
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