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A Comparative Study of Methods Used for the 
Prediction of Nonisothermal Austenite Decomposition 

T. R6ti, L. HorvMh, and L Felde 

In this paper, different phenomenological procedures applied to the prediction of the progress of non- 
isothermal austenite transformation are analyzed and compared. It is shown, that by formal generaliza- 
tion of the isothermal Avrami kinetic function, various types of kinetic differential equations can be 
generated. These are suitable for the phenomenological description of nonisothermal, diffusion-controlled, 
transformation processes. First, fundamental features of generalized kinetic differential equations and 
the additivity rule are discussed.  Next, practical applications for prediction purposes  are tested on the 
basis of dilatometric experiments. 

When studying the austenite/pearlite transformation in a low alloy eutectoid steel, transformation kinet- 
ics were  measured  under  isothermal and nonisothermal conditions. Dilatometric measurements verified 
that both the "semiadditive" kinetic differential equations and the additivity rule can be successfully ap- 
plied to predict the progress of  nonisothermal austenite/pearlite transformation. It was found that the se- 
lected Avrami type semiadditive differential equation and the application of the additivity rule furnish 
practically identical results. This is due to the fact that there is a close theoretical relationship between 
the kinetic differential equations of separable types and the additivity principle. 

I Keywords distortion prediction, phase transformation, process I 
modeling, transformation modeling 

1. Introduction 

Starting with theoretical considerations, five prediction 
methods (based on the use of  differential equations, the ad- 
ditivity principle, and an integro-differential equation of  
special form) are discussed and compared. The validity of  
different phenomenological methods applied to the predic- 
tion of  the progress of  austenite/pearlite transformation are 
critically examined. 

For this purpose, isothermal and nonisothermal dilatomet- 
ric measurements are performed on a low alloy eutectoid steel. 
Comparing the five methods, it is shown that the kinetics of  
nonisothermal austenite/pearlite transformation in the selected 
eutectoid steel can be successfully predicted using both the 
Avrami type generalized "semiadditive" kinetic differential 
equation and the additivity principle. 

2.1 Kinetic Differential  Equat ions  

In general, a mathematical model of transformation kinetics 
consists of  a set of  algebraic or differential equations that quan- 
titatively represent the progress of  the process as a function of  
time. 

As a first step, the traditional isothermal kinetic function is 
defined as: 

F(t, y, 7) = 0 (Eq 1) 

where t is the time, y is the amount of  material transformed, Tis 
the temperature, and F is an appropriately selected real func- 
tion. The kinetic function given by Eq 1 should ensure the sat- 
isfaction of the following conditions: 

y(t, T) = 0 if t < t  T (Eq 2.1) 

dy > 0 if t > t T (Eq 2.2) 
d t -  

2. Theoretical Background 

Before presenting the description of the investigations 
based on dilatometric experiments and computer simulation, 
the theoretical background of  prediction methods applied are 
outlined and definitions and notations are introduced. They 
concern the basic properties of  kinetic differential equations, 
the additivity rule, and the integro-differential equations se- 
lected for the description of  the diffusional austenite decompo- 
sition. 

T. R6ti and L. Horv~ith, B~inki Don'it Polytechnic, Budapest, Hun- 
gary; I. Felde, Bay Zolt~n Institute for Material Science and Technol- 
ogy, Budapest, Hungary. 

lim y(t, T) = Ye if t ---> ~ (Eq 2.3) 

where t T is the incubation time at a specific temperature and lie 
= Ye(T) is the total amount of  transformation product at the 
condition of  equilibrium. If  Ye = 1, the reaction complete; if Ye 
< 1, then it is incomplete by definition. 

In many cases, the modeling and the phenomenological de- 
scription of nonisothermal transformations are based on the ap- 
plication of  an ordinary differential equation given by: 

ay 
at =f~ y' T)fl (t, y, T, J') 

Y(tT) = 0 (Eq 3) 
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where T = dTIdt is the rate of  temperature change, and f0 andfl 
are nonnegative functions. It is assumed in Eq 3 that 

fl(t, y, T, T) - I 

if the temperature is constant, that is, T = 0. 
Most kinetic differential equations can be classified into 

two main categories: additive differential equations and 
semiadditive differential equations (Ref 1-3). 

A kinetic differential equation is said to be additive if it has 
the form: 

dy 
dt - K A ( 7 3 H  A (Y) (Eq 4) 

A kinetic differential equation is called semiadditive if it can be 
written in the form: 

dY , 
~-~ = H(y, 73 (Eq 5) 

Consequently, a transformation process described by Eq 4 or 5 
is called an additive or semiadditive process, respectively. 

According to the definitions stated above, every additive ki- 
netic differential equation is semiadditive. The special charac- 
teristic of Eq 4 and 5 are that the instantaneous transformation 
rate is solely a function of  the fraction transformed y and the 
transformation temperature T. The main property of additive 
kinetic differential equations is that they are separable with re- 
spect to Tand y. 

In the majority of cases, kinetic differential equations can 
be formulated in the following factorized form (Ref 4): 

ay 
~tt = [Ye(r ) - ylHB(t' y' T) 

Y(tT) = 0 (Eq 6) 

where H B is a nonnegative function and HB(t, y, 73 = 0 if t = t T 
at constant temperature. The term [lie (73 -Y] is referred to as 
the "impingement" factor (Ref 2). 

Kinetic differential equations of  practical interest can be 
written in the following generalized form: 

dr r Ye  rr 
(Eq7) 

where IX, ~, ~/, e, rl, and K a are appropriately selected composi- 
tion, microstructure, and temperature dependent parameters 
(Ref 5). Generally, the differential equation represented by for- 
mula in Eq 7 cannot be integrated in a closed form. From this, 
it follows that their parameters can be determined only by 
measuring y and dy/dt values simultaneously. The temperature 
dependent parameters IX, 13, T, e, 11, and K a can be calculated 
more easily if the values y and dy/dT (i.e., the derivative of  y 

with respect to temperature) are directly measured by perform- 
ing nonisothermal dilatometric investigations. A concrete 
practical application of  this method is demonstrated in Ref 6. 

In some special cases, by applying appropriately selected 
parameters, the differential equation (Eq 7) can be integrated in 
a closed form. For example, by selecting the following parame- 
ters in Eq 7: 

I X = p +  1 

I~=?=O 
e = p  

m - 1  
1 1 -  

in 

lhn 
m K T  

K R  - -  p r[ 

(p>0) 

(m> 1) 

(Eq 8) 

The differential Eq 7 can be transformed into a simplified form: 

dy m K~ 1/m 
- - =  
dt - - [Ye -y ]e+ 'L ( l , e_y  ) 

( m - l V m  

(Eq 9) 

Originally Eq 9 was used for predicting the nonisothermal 
austenite/ferrite reaction in hypoeutectoid steels (Ref 7, 8). If  
the kinetic parameters in Eq 9 are considered to be constant, its 
solution is given as: 

y(t) = Ye{1 - [1 + K T t m]-l/p} (Eq 10) 

I fp  = 1, then Eq 10 reduces to the well known Austin-Rickett's 
kinetic function (Ref 9, 10). Due to this fact, Eq 10 is referred 
to as a generalized Austin-Rickett's kinetic equation. 

It follows from the previous considerations, that differential 
Eq 7 is semiadditive if their parameters Ix, 13, Y, e, and 1"1 are in- 
dependent of time, and it is additive if Ix, 13, ~/, e, and 11 are con- 
stant. As previously mentioned, differential Eq 7 can be solved 
generally by using numerical methods, for example, by apply- 
ing the generalized recursive algorithm (Ref 1 1). 

2.2 A vrami Type Generalized Kinetic Differential 
Equations 

Kinetic differential equations can be derived from basic 
physical laws, but it is possible to generate them on the basis of  
the known isothermal kinetic functions (Ref 1). When con- 
structing kinetic differential equations for prediction purposes, 
the study concentrated on the commonly used Avrami equation 
defined as: 

y(t) : Ye{1 - exp [-Kt n] } (Eq 1 1) 

where K, n, and Ye are the temperature and composition de- 
pendent parameters (Ref 3, 1 2, 1 3). 

The Avrami Eq 1 1 can be extended to a nonisothermal con- 
dition in several other manners. The simplest way of  generat- 
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ing a kinetic differential equation from Avrami's law is to dif- 
ferentiate Eq 11 with respect to time. Thus (Ref 14): 

dy = Ye nKt n-I exp {-Kt n } (Eq 12) 
dt 

Another type of generalized kinetic differential equation is 
given as: 

dt Ye ] (q- 1)/q dy  = n g l / q t  (n-q)/q [Ye  - -  Y] [In re _----..~j (Eq 13) 

where n and q are nonnegative temperature dependent parame- 
ters. 

Differential equations (Eq 12, 13) are referred to as the 
Avrami type generalized kinetic functions because by solving 
them under isothermal conditions, the Avrami equation (Eq 
11) can be obtained as a special case. Some typical properties 
of  Eq 13 are parameters n and K can be estimated from isother- 
mal measurements, but in order to compute the parameter q, it 
is necessary to perform experiments at varying temperatures 
(i.e., by using linear cooling or heating). Because the right- 
hand side of Eq 13 depends on time explicitly, Eq 13 is not 
semiadditive. The function 5(T), defined as: 

n(T) 
~5(T) - (Eq 14) q(/3 

can be considered a quantitative measure of semiadditivity. It 
follows that the kinetic differential equation (Eq 13) is semiad- 
ditive if ~(T) - 1. I fq  is constant and Ye = 1, the solution of Eq 
13 is 

' ] q} 
y(t) = 1 - exp - I n r  1/q tu(n-q)/q at u 

0 
(Eq 15) 

I fq  and n are constant and q = n, and Ye = 1, then Eq 13 will be 
additive. In this case, the solution can be reduced to the form 

n} 
(Eq 16) 

2.3 Addi t iv i ty  R u l e  

The additivity rule was proposed by Scheil (Ref 15) to pre- 
dict the start of  transformation, that is, the incubation time un- 
der nonisothermal conditions. Later, it was extended to the 
entire range of  transformed fractions (Ref 2, 3, 16-19). 

The additivity rule is considered a special algorithm for pre- 
dicting the nonisothermal transformation (CCT curves) on the 
basis of  the previously known isotherm kinetic function (TTT 
curves) (Ref 20-23). It can be formulated by the following 
equation. Consider the isothermal time "c(y, T) at which the re- 

action reached a certain fraction of  completion y. On changing 
the temperature as a function of  time, the integral: 

G( t, y) = tjt dt u 

o xty,  T) 
(Eq 17) 

equals unity in that time t = tf when the fraction transformed 
reaches the preselected yf, that is, G(tf, Yt) = 1. 

Beginning with Eq 17, several conclusions can be drawn. It 
can be proven that if a kinetic differential equation is additive, 
the same fraction y is predicted by applying the additivity rule 
and by solving the differential equation (Eq 4) (Ref 2, 3, 24- 
26). From this, it immediately follows that the use of  Eq 4 and 
the application of  the additivity rule lead to identical results. 
Conversely, if a kinetic differential equation is nonadditive, 
the results computed by the two methods will be theoretically 
different. 

The traditional additivity rule given by Eq 17 can be gener- 
alized in the following form: 

t dt u 

G(t, y) = I x(y, T)f2(t u, T, T) 
0 

(Eq 18) 

where f2 is a nonnegative weighting function for which: 

f2(t, T, 7") - 1 

is fulfilled if T = 0 (Ref 27). Function f2, which takes into ac- 
count the influence of rate of temperature change on the rate of  
nonisothermal transformation, can be defined in several ways. 
In practice, it can be given in the form: 

f 2 ( t , T , T ) -  l + ~:7" (Eq 19.1) 

or 

f2(t, T, T) - exp (-~ (Eq 19.2) 

where ~ is a constant or a temperature and/or time dependent 
parameter. Iff2(t, T, T) - 1, then the conventional additivity 
principle represented by Eq 17 is a special case. 

Based on the generalized additivity formula (Eq 18), a non- 
isothermal kinetic differential equation can be generated in the 
form (Ref 27): 

dy ~G/-dt 

r a  t ]-I 

xo 
m -  

dt OG/'Oy ,c (y, 73A(t, 7; i3 
(Eq 20) 

where G(t,y) = 1 and y(0) = 0. 
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If the function x(y, T), characterizing the isotherm transfor- 
mation time, is separable with respect to y and T, then the solu- 
tion of the differential equation can be easily generated. In this 
case, x(y, T) can be written as: 

'[(y, T) = "~l(Y)'l;2(T) (Eq 21) 

and the differential equation (Eq 20) is simplified to the form: 

dy [d'~l(Y)/dy] -1 
R 

dt "r2(T)f2(t, T, J') 
(Eq 22) 

Integrating this formula: 

t 
'~l(y ) = f dtu 

0 "c2(T)f2(tu'T' ~) 
(Eq 23) 

where x 1 (0) = 0. Assuming that the inverse function x~ v exists, 
the solution y(t) can be generated as (Ref 27): 

{* } y(t) = X inv f dtu 
1 0 '~2(T)f2(tu ' T, 7") 

(Eq 24) 

Equation 24 makes it possible to derive nonisotherm kinetic 
equations from known isotherm kinetic functions. The method 
can generally be applied to every transformation process for 
which Eq 21 is fulfilled. For example, beginning with the 
Avrami function (Eq 11) and then supposing that Ye = 1 and n 
is constant, the following Avrami type generalized kinetic 
function is: 

y(t) = 1 - exp - f2(tu, T, J" ) dtu (Eq 25) 

fff2(t, y, T, ~ = 1, then Eq 25 will be identical to Eq 16. It must be 
noted that the parameters of weighting function f2 in Eq 25 can be 
estimated only by performing nonisothermal experiments. 

2.4 Integro-Differential Equations Used fo r  the 
Prediction o f  Nonisothermal Transformation 

Some authors use integro-differential equations for predic- 
tion purposes (Ref 2, 29-32). In many practical cases, these 
equations are formulated in the following form: 

d y  
-~t = (Ye - Y) " J [t, y ,  T] 

y(0) = 0 (Eq 26) 

where J[t, y, T] is a definite integral over the time interval (0, t). 
The integro-differential equation of the simplest type can be 

obtained from the Avrami's transformation theory (Ref 3, 12, 
13, 33), and it can be written as: 

t 

dy= (Ye -Y)  f n[n - 1]r(T)[t-  tu]n-2 dt u 
dt 0 

(Eq 27) 

where n = n(T) > 1. 
The solution of Eq 27 can be obtained by transforming the 

integral into the following form: 

t t ~ r n_l ~ 
f n [ n - l l K ( T ) [ t - t u  ]n-2 dtu= f nK(T)-~tt[t-tu] tdtu 
o o 

t 
= d  ~ nK(T)[t- tu] n-1 dt u 

dt 0 
(Eq 28) 

By inserting the formula of Eq 28 in Eq 27, and integrating with 
respect to time: 

oxp[ n* OEt (Eq 29) 

It can be easily verified, that with constant temperature, Eq 
29 is identical to the Avrami law (Eq 11, Ref 11). A special 
form of the kinetic function (Eq 29) has been used mainly by 
Japanese authors for predicting nonisothermal diffusion con- 
trolled transformations (Ref 28-30). 

Integro-differential equations can also be constructed from 
isothermal kinetic functions by using the differential equation 
(Eq 20), which was generated on the basis of the extended ad- 
ditivity principle given by Eq 18. This method is demonstrated 
by the following example. Starting with the Avrami equation 
(Eq 11, Ref 11), and assuming that Ye = 1 and n is constant (Eq 
20), then: 

dy K TM { " 1 "" 1-1/n 
d-7= V(t,Y) f2( t, T, ~ [ 1 - y ]  In/1 _---~) } (Eq 30) 

where V(t, y) is defined as: 

[ 1 V(t, y) = f dtu -1 
0 n (T)x (y, T)f2(/u, T, T) 

(Eq 31) 

and G(t, Ys) = 1. Consequently, if the Avrami exponent n is 
constant, it follows from Eq 30 and 31 that V(t, y) = n. In this 
case, integro-differential Eq 30 will simplify to the form: 

dy nKl/n { " 1 . . l-1/n 

From the preceding equations, it follows that in the case of con- 
stant Avrami exponent n, the solution of differential Eq 32 will 
be identical to the formula of Eq 25. 
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3. Investigations Based on Dilatometric 
Measurements and Computer Simulation 

3.1 Experimental Analysis of Kinetics of 
Austenite-Pearlite Transformation 

To compare the different phenomenological models se- 
lected for predicting the progress of  nonisothermal austenite 
decomposition, experiments were performed on a low alloy eu- 
tectoid steel (0.78% C-0.31% Si-0.41% Mn-0.96% Ni-0.28% 
Cr). The basic material, a hot rolled steel bar, was homoge- 
nized in oxygen-free argon at 1200 ~ for 10 h to remove the 
banding by high temperature treatment. To study the pearlite 
transformation behavior, specimens were austenitized at 1000 
~ for 20 min and cooled by argon according to specified time- 
temperature programs. The progress of pearlite transformation 
during isothermal holding in the 598 to 646 ~ temperature 
range and continuous cooling was measured in a vacuum dila- 
tometer, with argon rinsing, using a highly accurate tempera- 
ture control. 

When studying the isothermal austenite decomposition, the 
austenitized specimens were immediately cooled by argon to 
various temperatures below the eutectoid temperature (Ael = 
688 ~ and held at these temperatures to transform into pear- 
lite. Figure 1 shows isothermal kinetic curves for specimens 
transformed at temperatures of  598, 617, and 638 ~ 

To describe the isothermal austenite/pearlite transforma- 
tion in the temperature range of  598 to 646 ~ the authors 
chose the Avrami kinetic function. Taking into considera- 
tion that the austenite-pearlite transformation is complete, 
and that Ye = 1, the Avrami function can be given in a sim- 
plified form: 

y(t) = 1 - e x p  {-K(T)t n(T) } (Eq 33) 

Parameters K and n were estimated by nonlinear regression 
analysis, using the measured reaction fractions obtained from 
isothermal dilatometric tests. 

Table 1 gives the measured values of the Avrami exponent. 
As can be observed, parameter n is not constant in the investi- 
gated temperature interval, but it is a monotonic decreasing 
function of  temperature. 

The temperature-dependent kinetic parameters of  the 
Avrami equation were approximated by continuous exponen- 
tial type functions defined as: 

1 -] (Eq 34) K(T) = exp A o + Al(T- 562) 2 + A 2 ( T -  688) 2 T 

and 

n(T) = 3.4 + exp[N 0 + NIT+ N2T2] (Eq 35) 

where A 0 = -14.2144, A 1 = 1.0388 x 10 -3, A 2 = -8927517, N O 
=-389 ,  N t = 1.3115, and N2 =-1.10517 x 10 -3. Table 1 also 
gives values of the Avrami exponent calculated by Eq 33. Fig- 
ure 2 shows the TTT diagram describing the isothermal, 

austenite-pearlite transformation. It was calculated using Eq 
33 to 35. 

To analyze the pearlite formation during continuous cool- 
ing with constant rates of  temperature, specimens held at the 
austenitizing temperature were first gas cooled to 684 _+ 3 ~ 
and cooled with the following cooling rates: 0.17, 0.38, 0.85, 
and 1.1 K/s. Figure 3 illustrates the kinetics ofpearlite transfor- 
marion for different cooling rates. Transformation kinetics re- 
lated to the cooling rate of  1.1 K/s were excluded from 
investigations because a considerable amount of  austenite 
transformed into bainite during cooling. 

3.2 Computer Simulation Performed for the Prediction 
of Nonisothermal Austenite-Pearlite Transformation 

To predict the austenite-pearlite transformation during lin- 
ear cooling, the following methods were selected for testing: 

�9 Additivity rule represented by Eq 17 

�9 Integro-differential equation given by Eq 27 

�9 Three kinetic differential equations generated from Eq 12 
and 13 

It is important to note that all five methods are based on the use 
of  the Avrami law given by Eq 33. The solution of  the selected 
integro-differential equation results from the formula of Eq 29, 
as a special case, assuming that Ye = 1 for pearlitic reaction in a 
eutectoid steel: 

[! ] ya(t) = t - exp - nK(T)[t- tu] n-I dt u (Eq 36) 

Table  1 M e a s u r e d  a n d  c a l c u l a t e d  v a l u e s  o f  
A v r a m i  e x p o n e n t ,  n 

Avrami exponent, n 

Method 5980C 6090C 617~ 6300C 6380C 688~ 

Measured values 4.48 4.21 3.97 3.65 3.52 
Calculated by Eq 35 4.466 4.233 3.988 3.647 3.521 3:4 
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Fig. 1 Isothermal kinetic curves for specimens transformed at 
different temperatures 
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The selected kinetic differential equations were the following: 

aYB 
- n K t  n - I  exp { - K t  n} (Eq 37) 

dt  

d Y e =  n K t n _ l (  1 _ YC) (Eq 38) 

dY D 
- n K  1/n [- ln(l  - YD)] (.-l)/n (1 --YD) (Eq 39) 

dt 

680 

.O 66O 
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Fig. 2 
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- " -  y=0.25 
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Ae1=688 ~ 
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Time, s 

TTT diagram of the eutectoid steel investigated 

In the case of Ye = 1, Eq 37 is identical to Eq 12. Equations 38 
and 39 are considered to be special cases ofEq 13. Starting with 
Eq 13 and assuming that Ye = 1, Eq 38 can be obtained by se- 
lecting q(T) = 1, while Eq 39 can be obtained if  q(T) = n(T) is 
fulfilled. Parameters Kand n in Eq 37 to 39 were calculated by 
means of the formulas in Eq 34 and 35. 

Because Eq 37 to 39 have been used by several authors for 
prediction purposes (Ref 13, 14, 33-35), the following facts 
must be taken into account: 

�9 Since K and n are temperature dependent, the solution of 
differential equations (Eq 37-39) can be determined by nu- 
merical methods only. For numerical calculations the 
authors used the computational algorithms given in Ref 19. 

�9 Under isothermal conditions, the solution of  Eq 37 to 39 re- 
sults in the traditional Avrami equation (Eq 33) as a special 
case. 

�9 Kinetic differential Eq 39 can be generated not only from 
Eq 13 but also from Eq 7 or Eq 30. This can be easily veri- 
fied by substituting (x = 1, ~ = O, 7 =  (n - 1)In, r I = O, and 
K R = n K  1/ninto Eq 7 or by substitutingf2(t, T, T) - 1 into Eq 
32, respectively. It is semiadditive because n is tempera- 
ture-dependent. If  n = 1, Eq 38 and 39 are simplified into 
the same form. 
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For cooling rates 0.17, 0.38, and 0.85 K/s, the measured 
data and the results of computer simulation obtained by the 
five methods of prediction are shown in Fig. 4 to 6. 

3.3 Comparison of Methods Used for Predicting the 
Austenite-Pearlite Transformation 

From the comparison between the calculated results and 
experiments, the following conclusions can be drawn (Fig. 
4-6): 

�9 The pearlite fractions predicted by Eq 39 and the additivity 
rule agree with experimental results obtained by dilatomet- 
ric measurements. The kinetic differential Eq 39 and the 
application of the additivity rule lead to the similar results. 
This is because the structure of the differential equations 
(Eq 30, 39) seems to be similar. 

�9 Pearlite amounts calculated by Eq 36 and 38 differ consid- 
erably from those obtained by measurements. As can be 
seen from diagrams, the pearlite fraction predicted by Eq 
38 is overestimated, while Eq 36 underestimates the meas- 
ured amount of pearlite. 

�9 As demonstrated in Fig. 4 to 6, a special property of Eq 37 
is lim YB (t) is not equal to 1, if the transformation time 
tends toward infinity. Due to this fact, which is verified 

theoretically in Appendix 1, the requirement formulated by 
Eq 2.3 is not fulfilled. From this, it follows that the kinetic 
equation represented by Eq 37 cannot be applied to predict 
nonisothermal transformation (Ref 14). 

4. Summary and Conclusions 

Several approaches devoted to the prediction of non- 
isothermal transformation were analyzed and compared, 
taking into consideration the generalization of pheno- 
menological methods of various types. Starting with the 
Avrami function, it was demonstrated that conventional iso- 
therm kinetic functions can be extended in several ways to 
describe the diffusional transformation processes occurring 
at varying temperatures. 

After studying the austenite decomposition in a low alloy 
eutectoid steel, kinetic pearlite transformation was measured 
under isothermal and nonisothermal conditions using a dila- 
tometer. 

For predicting the progress of nonisothermal pearlite trans- 
formation, five methods--the additivity rule represented by Eq 
17, the integro-differential equation (Eq 27), and three differ- 
ent types of kinetic differential equations (Eq 37-39)--were 
analyzed and tested. 
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Fig. 5 Transformation kinetics predicted by five different 
methods (cooling rate: 0.38 K/s) 
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methods (cooling rate: 0.85 K/s) 
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Fig. 7 Kinetic curve predicted from Eq A2 and A3 

The main conclusions can be summarized as follows: 

After analyzing the austenite/pearlite transformation in a 
low alloy eutectoid steel during continuous cooling, the 
authors found that the pearlite fractions predicted by the ki- 
netic differential equation (Eq 39) and the additivity rule 
are in agreement with experimental results obtained by di- 
latometric measurements. The semi additive differential 
equation (Eq 39) and the use of the additivity rule lead to 
similar results. This is explained by the "structure" of  the 
differential Eq 30 generated on the basis of the additivity 
rule. Differential Eq 39 is a similar type. Theoretically, Eq 
30 and 39 can be identical only if  the Avrami exponent is 
constant, and the weighting function f2(t, y, T, T) = 1. In 
this case, Eq 39 is additive. 

Comparing the methods based on the application of the addi- 
tivity rule and differential Eq 39, the application of the latter is 
advantageous due to simpler numerical computations. If dif- 
ferential Eq 39 is not able to meet the requirements related to 
the prediction accuracy, then the use of the generalized 
Avrami type kinetic differential equation defined as shown 
below is recommended. In this case, however, parameter q 
and the weighting function f2 should be estimated by perform- 
ing preliminary nonisothermal experiments. 

dy nK 1/q 

dt f2(t, T, T) 
f t" re ,~)<q-wq 

l n - -  t (n-q)/q[Ye-Y] l ( g e - y J l  

Pearlite amounts predicted by applying Eq 36 and 38 differ 
considerably from those obtained by dilatometric measure- 
ments. It was found that Eq 38 overestimates, while Eq 36 un- 
derestimates the measured amount of pearlite. Finally, it was 
proven mathematically that kinetic differential Eq 37 is inap- 
plicable to the prediction of nonisothermal transformations. 
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